Introduction of Kimura Laboratory




Research topics

Preventing Column Yield and Assessment of Ultimate

> Development of Mid-Story Pin Connection System
Seismic Capacity of Steel Moment Resisting Frames

Piles and Elucidation of Dynamic Buckling Behavior of

> Construction of Ultimate State Design Method of Steel
Steel Piles in Liquefied Soil

Invention of Evaluation Method of Lateral
Buckling Strength of Large-Span Beams

Creation of Seismic Design Method of Buckling
Restrained Braced Frame with Concrete Slab




Research topics

FEA model of skyscraper subjected to huge earthquake
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Development of Mid-Story Pin Connection
System Preventing Column Yield and

Assessment of Ultimate Seismic Capacity of
Steel Moment Resisting Frames

FEA model of skyscraper subjected to huge earthquake




Development of new column base system
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Development of new column base system
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Construction of Ultimate State Design Method of

Steel Piles and Elucidation of Dynamic Buckling
Behavior of Steel Piles in Liquefied Soll

FEA model of skyscraper subjected to huge earthquake

_# Local buckling Pile top

MR bt /! “— L ocal buckling:
N o | Pile foundation | '

W |

i) ‘ Flexural
3 Local buckling

buckling *



Collapse mechanism of pile

oo  Current Japanese design codes
Inertial Force| et b L
ertial Force Dead Load _ -,
— > - — It is assumed that steel pile’s flexural
Superstructure |:l @ - buckling does not occur
Force Couple due to because of soil restriction against piles
Overturning Moment lateral deformation.
Horizontal R R J
Force due t . . .
oree due 1o The design codes have no prescription
Inertial Force o
4:|> about the limitation of slenderness
<Sl<al<s for steel piles.
<<=
Steel Piles “|<a|<a[<3
<::| <::| Reference: Architectural Institute of Japan, Recommendation for
Non-Liquefied | f< <1 ] Design of Building Foundations, 2001. (in Japanese)
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Collapse mechanism of pile
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Collapse mechanism of pile

@ Collapse Mechanism of Steel Piles below High-Rise Building in
Liquefied Soil

Centrifugal tests of high-rise
superstructure, steel piles, and
liquefied soil system
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Specimen for centrifugal test




Invention of Evaluation Method of Lateral

Buckling Strength of Large-Span Beams

FEA model of skyscraper subjected to huge earthquake
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Lateral buckling of I-beam
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Non-structural members settle on a top flange (continuous brace)
- Constraint against lateral buckling deformation
= This effect is ignored in the current design guideline
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Lateral buckling of I-beam
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Lateral buckling of I-beam
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Creation of Seismic Design Method of Buckling

Restrained Braced Frame with Concrete Slab

FEA model of skyscraper subjected to huge earthquake
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Stress transfer mechanism of composite beam

The neutral axis location varies due to the composite effect during
positive bending and negative bending.
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Stress transfer mechanism of composite beam

Buckling may occur at the bottom flange. The
capacity is also influenced by the shear anchor.

v

Prospective impact of composite dowel to the
buckling instability is inevitable for the practical
application to the building structures.




